Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(5): 1383-1398, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485782

RESUMO

Homosalate (HMS) is a UV filter used in sunscreens and personal care products as a mixture of cis- and trans-isomers. Systemic absorption after sunscreen use has been demonstrated in humans, and concerns have been raised about possible endocrine activity of HMS, making a general population exposure assessment desirable. In a previous study, it was shown that the oral bioavailability of cis-HMS (cHMS) is lower than that of trans-HMS (tHMS) by a factor of 10, calling for a separate evaluation of both isomers in exposure and risk assessment. The aim of the current study is the investigation of HMS toxicokinetics after dermal exposure. Four volunteers applied a commercial sunscreen containing 10% HMS to their whole body under regular-use conditions (18-40 mg HMS (kg bw)-1). Parent HMS isomers and hydroxylated and carboxylic acid metabolites were quantified using authentic standards and isotope dilution analysis. Further metabolites were investigated semi-quantitatively. Elimination was delayed and slower compared to the oral route, and terminal elimination half-times were around 24 h. After dermal exposure, the bioavailability of cHMS was a factor of 2 lower than that of tHMS. However, metabolite ratios in relation to the respective parent isomer were very similar to the oral route, supporting the applicability of the oral-route urinary excretion fractions for dermal-route exposure assessments. Exemplary calculations of intake doses showed margins of safety between 11 and 92 (depending on the approach) after single whole-body sunscreen application. Human biomonitoring can reliably quantify oral and dermal HMS exposures and support the monitoring of exposure reduction measures.


Assuntos
Monitoramento Biológico , Salicilatos , Protetores Solares , Humanos , Administração Cutânea , Toxicocinética
2.
Chem Res Toxicol ; 37(2): 285-291, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227338

RESUMO

Homosalate (HMS) is an organic UV filter used in sunscreens and personal care products. Despite its widespread use and detection in environmental matrices, little is known regarding its exposure in humans. HMS is used as a mixture of cis- and trans-isomers, and we recently revealed major differences in human toxicokinetics, indicating the need to consider these isomers separately in exposure and risk assessments. In the course of these previous investigations of human HMS toxicokinetics, we identified two trans-HMS-specific and one cis-HMS-specific biomarker candidates. However, the latter lacks sensitivity due to only low amounts excreted in urine, prompting the search for another cis-HMS-specific biomarker. Our toxicokinetic investigations revealed a total of five isomers of HMS carboxylic acid metabolites (HMS-CA). Of these, only one was specifically formed from cis-HMS (HMS-CA 5), but its full identity in terms of constitution and configuration had, so far, not been elucidated. Here, we describe the synthesis of three HMS-CA isomers, of which the isomer (1R,3S,5S)/(1S,3R,5R)-3-((2-hydroxybenzoyl)oxy)-1,5-dimethylcyclohexane-1-carboxylic acid turned out to be HMS-CA 5. Taken together with two previously synthesized HMS-CA isomers, we were able to identify the constitution and configuration of all five HMS-CA isomers observed in human metabolism. We integrated the newly identified cis-HMS-specific metabolite HMS-CA 5 into our previously published human biomonitoring LC-MS/MS method. Intra- and interday precisions had coefficients of variation below 2% and 5%, respectively, and the mean relative recovery was 96%. The limit of quantification in urine was 0.02 µg L-1, enabling the quantification of HMS-CA 5 in urine samples for at least 96 h after sunscreen application. The extended method thus enables the sensitive and separate monitoring of cis- and trans-HMS in future human biomonitoring studies for exposure and risk assessment.


Assuntos
Salicilatos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Salicilatos/metabolismo , Protetores Solares/metabolismo , Técnicas de Química Sintética
3.
Environ Int ; 182: 108334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029623

RESUMO

The UV filters octocrylene (OC) and 2-ethylhexyl salicylate (EHS) are commonly used in sunscreens and frequently detected in environmental media. However, knowledge on human exposures is scarce. In this human biomonitoring (HBM) study, we analyzed concentrations of exposure biomarkers specific to OC (CPAA, DOCCA, 5OH-OC) and EHS (5OH-EHS, 5oxo-EHS, 5cx-EPS) in 24-h urine samples (n = 420) from the German Environmental Specimen Bank (ESB). These samples were collected from German students (20-29 years; 30 males/30 females per year) between 1996 and 2020 (4-year intervals; collection in winter). We found continuously increasing OC and EHS exposures (Jonckheere-Terpstra; p < 0.001) documented by very few to no samples with concentrations of the most sensitive biomarkers CPAA and 5cx-EPS above the limit of quantification (LOQ) in 1996 (5 % and 0 %, respectively) and reaching 100 % and 93 % above the LOQ in 2016, with median concentrations of 4.79 and 0.071 µg/L, respectively. In 2020, biomarker concentrations slightly decreased to 3.12 µg/L CPAA (97 %>LOQ) and 0.060 µg/L 5cx-EPS (88 %>LOQ). This general trend was confirmed by the other biomarkers, however at lower detection rates. Based on metabolite excretion in the 24-h urine samples and human toxicokinetic data, we calculated maximum daily intakes (DI) of 17 µg/(kg bw * d) OC and 59 µg/(kg bw * d) EHS. Based on a derived no-effect level (DNEL) of 0.8 mg/(kg bw * d), the OC exposures of individuals in our study did not indicate any health risk. Similarly, for EHS all biomarker concentrations were well below the HBM-I values of 12 µg/L 5OH-EHS and 11 µg/L 5cx-EPS. Our data proves the general applicability of specific OC and EHS metabolites for HBM in the general population and shows clearly increasing exposures. Higher (co-)exposures must be expected in populations with increased sunscreen use such as (summer) vacationers, children and outdoor workers.


Assuntos
Monitoramento Biológico , Poluentes Ambientais , Masculino , Criança , Feminino , Humanos , Alemanha , Protetores Solares/análise , Biomarcadores/urina , Monitoramento Ambiental , Exposição Ambiental/análise , Poluentes Ambientais/urina
4.
Environ Int ; 170: 107637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423396

RESUMO

Homosalate (HMS) is a salicylate UV filter broadly used in sunscreens and personal care products. The aim of this study was the collection of human toxicokinetic data on HMS as a tool for risk assessment. For this purpose, metabolism and urinary excretion after a single oral HMS dose (98.2-149.1 µg (kg body weight)-1) were investigated in four volunteers (two male, two female). As commercial products generally contain a mixture of cis- and trans-HMS, both cis-rich and trans-rich isomer mixtures were studied to investigate possible differences in metabolism. Initial metabolite screening tentatively identified six oxidative metabolite subgroups, of which hydroxylated and carboxylic acid metabolites were studied in more detail. Unchanged parent HMS and the previously identified HMS metabolites 5-((2-hydroxybenzoyl)oxy)-3,3-dimethylcyclohexane-1-carboxylic acid (HMS-CA) and 3-hydroxy-3,5,5-trimethylcyclohexyl 2-hydroxybenzoate (3OH-HMS), respectively, were quantified separately as cis- and trans-isomers via authentic standards by isotope dilution analysis. In addition, further alkyl-hydroxylated and carboxylic acid metabolites were investigated semi-quantitatively. Peak concentrations in urine were reached 1.5-6.3 h post-dose and more than 80 % of each of the quantitatively investigated metabolites (and at least 70 % of the semi-quantitatively investigated metabolites) was excreted within the first 24 h. Plasma and urine data indicated that oral bioavailability of cis-HMS was one order of magnitude below that of trans-HMS. Furthermore, the mean total urinary excretion fraction (Fue) for the metabolites derived from trans-HMS (6.4 %) was two orders of magnitude higher than for the metabolites derived from cis-HMS (0.045 %). Our data proves diastereoselectivity in toxicokinetics of cis- and trans-HMS, emphasizing the necessity to address isomer ratios in future studies including HMS exposure and risk assessments.


Assuntos
Biomarcadores , Protetores Solares , Feminino , Humanos , Masculino
5.
Anal Chim Acta ; 1176: 338754, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399889

RESUMO

Homosalate (HMS) is an organic UV filter used in sunscreens and personal care products worldwide. It has been detected in various environmental matrices and in humans after application of HMS-containing products. However, sufficient data on the internal HMS exposure in humans is currently not available. Thus, we aimed at providing an analytical method for the sensitive determination of specific HMS metabolites in human urine. We describe the synthesis of analytical standards for the four oxidative HMS metabolites included in this method: 5-((2-hydroxybenzoyl)oxy)-3,3-dimethylcyclohexane-1-carboxylic acid (HMS-CA) and 3-hydroxy-3,5,5-trimethylcyclohexyl 2-hydroxybenzoate (3OH-HMS), as cis- and trans-isomers, respectively. After enzymatic hydrolysis, urine samples were analyzed using liquid chromatography-electrospray ionization-triple quadrupole-tandem mass spectrometry, including turbulent flow chromatography for online sample cleanup and analyte enrichment (online-SPE-LC-MS/MS). Quantification was performed by stable isotope dilution analysis, using deuterium-labeled HMS-CA as internal standards (cis and trans). Limits of quantification of 0.02-0.04 µg L-1 were sufficiently low to quantify the HMS metabolites for up to 96 h (trans-HMS-CA), 48 h (cis-HMS-CA and 3OH-trans-HMS), and 24 h (3OH-cis-HMS) after a pilot dermal application of a commercially available sunscreen in one human volunteer, showing clear elimination kinetics. Furthermore, in a German pilot population (n = 35), HMS metabolites were above the LOQ precisely in those three individuals who had applied sunscreen within the previous five days, thus corroborating the specificity of the identified metabolites as biomarkers of HMS exposure. The method is currently used in a human metabolism study and will be applied in future population-scale human biomonitoring studies.


Assuntos
Salicilatos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Protetores Solares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...